Xylose Lysine Deoxycholate Agar (Eur. Pharm.) Art. No. 01-211

Also known as

XLD Agar

Specification

Solid medium for the isolation of enteropathogenic species, especially *Salmonella* according to Pharmacopeial Harmonised Method and ISO Standard 6340.

Formula* in g/L

Xylose	
L-Lysine	
Lactose	
Sucrose	
Sodium chloride	
Yeast extract	
Phenol red	0,08
Sodium deoxycholate	
Sodium thiosulfate	6,80
Ammonium ferric citrate	
Agar	
Final pH 7,4 \pm 0,2 at 25°C	

* Adjusted and /or supplemented as required to meet performance criteria

Directions

Suspend 56,68 g of powder in 1 L of distilled water. Heat with constant stirring until boiling. Pour immediately into plates. **Do not autoclave and avoid remelting**.

Description

Xylose Lysine Deoxycholate Agar is a selective differential medium, suitable for the detection of pathogenic enterobacteria, especially *Shigella*. Gram negative microbiota are inhibited by the low amount of deoxycholate, whilst *Shigella* grows.

Xylose, lactose or sucrose fermentation produces the acidification of the medium, and this is seen by the indicator turning yellow, surrounding the colonies. This colour disappears after 24 hours, so observations must be carried out between 18 and 24 hours.

Hydrogen sulfide production from thiosulfate is easily detected because colonies become darker, due to the ferric sulfide precipitate. Lysine decarboxylation to cadaverine may also be observed in the medium, since it produces alkalinization and consequently the indicator turns to red.

All these reactions allow a good differentiation of *Shigella*. *Edwardsiella* and *Proteus inconstans* are the only enterobacteria other than *Shigella* which do not ferment xylose and therefore show negative fermentation reaction. *Salmonella* ferment xylose, but it is consumed quickly and alkalinization of the medium due to lysine decarboxylation, may mask

the reaction. Salmonella colonies become darker due to ferrous sulfide precipitates, which is also a common property with *Edwardsiella*.

Other types of enterobacteria do not suffer this phenomenon, since acid accumulation due to lactose and sucrose fermentation is so high that it avoids pH reversion by decarboxylation and even ferrous sulfide precipitate in the first 24 hours.

In the table on the next page, typical colonial appearances on XLD medium after 24-36 hours of incubation at 37°C are described.

References

- ATLAS, R.M., L.C. PARK (1993) Handbook of Microbiological Mediafor the examination of Food. CRC Press Inc.Boca Ratón.
- DOWNES, F.P. & K. ITO (2001) Compendium of Methods for the Microbiological Examination of Foods.4th ed. APHA. Washington DC. USA.
- EUROPEAN PHARMACOPOEIA 7.0 (2011) 7th ed. §2.6.13. Microbiological examination of non-sterile products: Test for specified microorganisms. Harmonised Method. EDQM. Council of Europe. Strasbourg.
- HORWITZ, W. (2000). Official Methods of Analysis of the AOAC Internacional. 17th ed. Gaithersburg Md. USA.
- · ICMSF (1978) Microorganisms in Foods 1. University of Toronto Press.
- ISO 6340:1995 STANDARD. Water Quality Detection of Salmonella spp.
- ISO/TS 11133-1: 2009. Microbiology of food and animal feeding stuffs.-Guidelines on preparation and production of culture media. Part 1: General guidelines on quality assurance for the preparation of culture media in the laboratory.
- ISO/TS 11133-2: 2003 Corr. 2004. Microbiology of food and animal feeding stuffs.- Guidelines on preparation and production of culture media. Part 2: Practical guidelines on performance testing of culture media.
- PASCUAL ANDERSON, M^a R. (1992) Microbiología Alimentaria. Díaz de Santos, S.A. Madrid.
- TAYLOR, W.J. (1965) Isolation of Shigella. I. Xylose Lysine Agars: New media for isolation of enteric pathogens. Am. J. Clin. Path 44:471-475.
- US FDA (Food and Drug Adminstrations). (1998) Bacteriological Analytical Manual. 8th ed. Revision A. AOAC International. Gaithersburg, Md. USA.
- USP 33 NF 28 (2011) <62> Microbiological examination of non-sterile products: Test for specified microorganisms. Harmonised Method. USP Corp. Inc. Rockville. MD. USA.

Storage

For laboratory use only. Keep tightly closed, away from bright light, in a cool dry place (+4 $^{\circ}$ C to 30 $^{\circ}$ C and <60% RH).

(continues on the next page)

Xylose Lysine Deoxycholate Agar (Eur. Pharm.) Art. No. 01-211

COLONIAL APPEARANCE	MICROORGANISM
Transparent red colonies	Shigella sp., Proteus incontans, Salmonella paratyphi A., sometimes S.cholerasuis and S. pullorum
Transparent red colonies with black nucleus	Edwarsiella and most species of Salmonella
Orange and slightly opaque colonies	Salmonella typhi
Colonies red, translucent without zone	Pseudomonas, Proteus rettgeri
Yellow opaque colonies Escherichia (when growth) Enterobacter, Aeromonas, bacter.	
Yellow, mucous, opaque and black-nucleated colonies.	Klebsiella, Citrobacter intermedius (when growth)
Yellow, transparent colonies with black nucleus	Most strains of Proteus mirabilis, P. vulgaris.
Yellow opaque colonies without zone	Serratia, Hafnia.

Quality control

Incubation temperature: 35°C ± 2,0 Incubation time: 24 - 48 h Inoculum: 10-100 CFU (Productivity) // 1.000-10.000 CFU (Selectivity). Spiral Plate Method (ISO/TS 11133-1/2)

Microorga	nism	Growth	Remarks
Enterococcus faecalis A	TCC 29212	Inhibited	Selectivity
Escherichia coli ATCC 8	739	Partial Inhibition	Selectivity
Proteus mirabilis ATCC	3071	Productivity > 0.50	Colourless colonies w. black centre (H $_2$ S +)
Salmonella abony NCTC	6017	Productivity > 0.50	Colourless colonies w. black centre (H $_2$ S +)
Salmonella typhimurium	ATCC 14028	Productivity > 0.50	Colourless colonies w. black centre (H $_2$ S +)
Salmonella enteritidis AT	CC 13076	Productivity > 0.50	Colourless colonies w. black centre (H $_2$ S +)
Shigella flexneri ATCC 12	2022	Productivity > 0.50	Colourless colonies w. transparent centre (H ₂ S -)

Salmonella typhimurium ATCC 14028

Uninoculate plate (Control)

Shigella flexneri ATCC 12022